

Dräger X-plore[®] filters

Cross section Dräger X-plore[®] filters

GAS FILTERS

COMBINATION FILTERS

Filter selection

Contaminants come in different forms - generally: aerosols (dusts, mists, fibres, fumes, microorganisms) or gases or vapours. You can choose between the filter types to protect against one of these forms or a combination of both of them. The following table shows you the colour coding of filters according to EN 14387 - which helps you to determine which filter-type is needed for the contaminants you are dealing with.

Colour code	Filter type	Contaminants present	Filter type	Filter class	Protection against	
	AX	Gases and vapours of organic compounds with boiling point	Gas filter		Gases and vapours	
		< 65°C			Capacity:	
	А	Gases und vapours of organic compounds with boiling point		1	Small Medium	
				3	Large	1
	в	Inorganic gases and vapours, e.g. chlorine,	Particle filter	Particle Efficiency		_
		hydrogen sulphide, hydrogen cyanide		(separation ability):		
	E	Sulphur dioxide, hydrogen chloride		1	Small	
	К	Ammonia and organic ammonia derivates		2	Medium	
	CO	Carbon monoxide				
	Hg	Mercury vapour		3	Large	
	NO	Nitrous gases including nitrogen monoxide	Combined	Gases,	Vapours, Particles	
	Reactor	Radioactive iodine including radioactive methyl iodide	filter	1-P2 2-P2	Appropriate	
	Р	Particles		1-P3 2-P3	and particulate filters	,

Differentiation of filter types

Filters are split in different classes according to their capacity (gas filters) or their efficiency (particle filters). The class of a particle filter indicates how efficient the filter is in filtering out particles: class 1: 80%, class 2: 94%, class 3: 99.95%

	Filter type	Contaminants procent	Filter type	Filter	Protection against	Maximum permissible
Colour code	Filter type	Contaminants present		class		concentration of toxic substance
	AX	Gases and vapours of organic compounds with boiling point	Gas filter		Gases and vapours	50 times the OEL with half masks /
		< 65°C			Capacity:	2000 times the OEL with full face masks, but maximal:
	А	Gases und vapours of organic compounds with boiling point		1	Small	0.1 vol. % (1000 ppm)
		> 65°C		2	Medium	0.5 vol. % (5000 ppm)
	В	Inorganic gases and vapours, e.g. chlorine.		3	Large	1.0 vol. % (10000 ppm)
	_		Particle filter	Particle Efficiency		
		hydrogen sulphide, hydrogen cyanide		(separa	ition ability):	
	Е	Sulphur dioxide, hydrogen chloride		1	Small	4 times the OEL with half masks /
	К	Ammonia and organic ammonia derivates		0	Modium	5 times the OEL with full face masks
	CO	Carbon monoxide		2	Medium	16 times the OEL with full face masks
				3	Large	48 times the OEL with half masks /
	Hg	Mercury vapour				1000 times the OEL with full face masks
	NO	Nitrous gases including nitrogen monoxide	Combined	Gases, Vapours, Particles		
	Reactor	Radioactive iodine including radioactive methyl iodide	filter	1-P2 2-P2	Appropriate combined gas and particulate	Appropriate combined levels
	Р	Particles		1-P3		

Values are the Nominal Protection Factors, taken from the CEN Report 529. Additional national and local regulations must be followed.

According to EN143:2006/A1 particle filters have to be marked regarding reusability:

NR (Non Reusable) if the filter is limited to single shift only

R (Reusable) if the filter is re-usable

Warning: Never use any kind of filtering respiratory protection device:

- in oxygen deficient atmosphere (see local legislation for further guidelines e.g. UK less than 19 vol. % O_2)
- in poorly ventilated areas or confined spaces, such as tanks, small rooms, tunnels, or vessels
- in atmospheres where the concentrations of the toxic contaminants are unknown or are immediately dangerous to life or health (IDLH)
- when the concentration of a contaminant is higher than the maximum permissible concentration and/or the filter class capacity

Dräger. Technology for Life®