## OVERVIEW

Honeywell's microprocessor based STT350 Smart Temperature Transmitter converts a primary sensor input into an output signal for a conventional 4 to 20 mA , two wire loop.

This universal temperature input model readily accepts signals from a wide variety of industry standard thermocouples or resistance temperature detectors (RTDs) as well as a straight millivolt or Ohms sensor. Its output signal is either proportional to the measured variable or linearized to temperature, and is transmitted in either an analog 4-20mA format or a digital DE protocol format for direct digital integration to the TPS® control system. You easily select the analog or digital format for the output signal transmission through the Smart Field Communicator ${ }^{\circledR}$ (SFC) which is the common hand-held operator interface for our Smartline ${ }^{\text {TM }}$ Transmitters. All configuration, operation and communication functions are under the control of the STT350's microprocessors and are implemented through the SFC.

## FEATURES

- Single model accepts input signals from a choice of primary sensors to satisfy varying applications requirements with minimum transmitter inventory.
- Standard digital cold-junction compensation function provides accurate and reliable temperature measurement over a wide ambient operating range.
- Direct digital integration with TPS system provides local measurement accuracy to the system level without adding typical A/D and D/A converter inaccuracies.
- Added Smart features include reading of the highest and lowest

inputs, external cold junction compensation temperature at an isothermal block and engineering units displayed in degrees $\mathrm{C}, \mathrm{F}, \mathrm{K}$, or R plus millivolt and Ohms.
- Suitable for DIN rail mounting or remote field mounting in a flameproof housing.
- Smart transmitter personality with local or remote interfacing means significant manpower efficiency improvements in commissioning, start-up, and ongoing maintenance functions.
- Automatically provides true differentia temperature measurement of thermocouple or RTD inputs by individual linearization of each sensor reading and then computing the difference.
- Suitable for true 4-wire Pt100 measurement (or 3- or 2-wire).
- Write protect link included to safeguard configuration settings.
- Designed to be in compliance with EMC requirements and is CEMarked.
- Includes sensor break detection on all input wires.
- Post read validation of the measured signal before providing fresh output.
- Supports dual thermocouple sensor inputs for redundant sensor operation.
- Integral analog or digital indicating meter option Surge/lightning protection options can be installed internally in housing or externally in conduit.


## DESCRIPTION

The STT350 transmitter is suitable as a direct replacement for any conventional temperature transmitter in use today. Its memory contains the characteristics of most commonly used temperature sensors. This means that you can use the SFC to configure the transmitter for any of these sensors and it will automatically correct for their associated non-linearities. You make all transmitter adjustments and diagnostic checks through an SFC connected anywhere across the 420 mA wire route. This lets you initiate configuration and maintenance functions at locations remote from the transmitter itself. The SFC is also fully compatible with all other Honeywell Smartline Transmitters. The transmitter module can also be installed on a standard DIN rail (to EN50022) or remotely mounted in a flameproof housing designed for either surface or two-inch pipe-stand mounting. Transmitters can be pre-configured at the factory to your exact specifications or they will be shipped with factory default configuration-ready to accept your own configuration.


Figure 2—Block Diagram

## Performance Under Rated Conditions

| Input Type | Digital Accuracy for Maximum Range Limits | Maximum Range Limits |  | Digital Accuracy for Normal Range Limits |  | Normal Range Limits |  | Standards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { \% of Max. } \\ \text { Span } \\ \hline \end{gathered}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |  |
| $\begin{aligned} & \hline \text { RTD } \\ & \text { Pt } 100 \end{aligned}$ | 0,01 | -200 to 850 | -328 to 1562 | 0,1 | 0,18 | -200 to 450 | -328 to 842 | $\begin{aligned} & \text { IEC 751:1986 } \\ & (\mathrm{a}=0.00385) \\ & \hline \end{aligned}$ |
| Pt 200 | 0,01 | -200 to 850 | -328 to 1562 | 0,1 | 0,18 | -200 to 450 | -328 to 842 | $\begin{aligned} & \text { IEC 751:1986 } \\ & (a=0.00385) \\ & \hline \end{aligned}$ |
| Pt 500 | 0,02 | -200 to 850 | -328 to 1562 | 0,1 | 0,18 | -200 to 450 | -328 to 842 | $\begin{aligned} & \text { IEC 751:1986 } \\ & (a=0.00385) \\ & \hline \end{aligned}$ |
| Pt 100J | 0,01 | -200 to 640 | -328 to 1184 | 0,1 | 0,18 | -200 to 450 | -328 to 842 | $\begin{aligned} & \text { JISC 1604-81 } \\ & (a=0.00392) \\ & \hline \end{aligned}$ |
| Ni 50 | 0,04 | -80 to 150 | -112 to 302 | 0,1 | 0,18 | -50 to 150 | -58 to 302 | Honeywell Type A |
| Cu 10 | 0,37 | -20 to 250 | -4 to 482 | 1,0 | 1,8 | -20 to 250 | -4 to 482 | General Electric |
| Cu 25 | 0,19 | -20 to 250 | -4 to 482 | 0,5 | 0,9 | -20 to 250 | -4 to 482 | General Electric |
| $\begin{array}{\|l\|} \hline \text { T/C: } \\ \mathrm{B} \\ \hline \end{array}$ | 0,14 | 200 to 1820 | 392 to 3308 | 1,0 | 1,8 | 550 to 1820 | 1022 to 3308 | IEC 584-1 (ITS-90) |
| C | 0,03 | 0 to 2300 | 32 to 4172 | 0,6 | 1,08 | 0 to 1650 | 32 to 3002 | IPTS 68 |
| D | 0,03 | 0 to 2300 | 32 to 4172 | 0,6 | 1,08 | 330 to 1370 | 626 to 2498 | IPTS 68 |
| E | 0,04 | -200 to 1000 | -328 to 1832 | 0,2 | 0,36 | 0 to 1000 | 32 to 1832 | IEC 584-1 (ITS-90) |
| J | 0,04 | -200 to 1200 | -328 to 2192 | 0,2 | 0,36 | 0-800 | 32 to 1472 | IEC 584-1 (ITS-90) |
| K | 0,04 | -200 to 1370 | -328 to 2498 | 0,3 | 0,54 | -120 to 1370 | -191 to 2498 | IEC 584-1 (ITS-90) |
| N | 0,06 | -200 to 1300 | -328 to 2372 | 0,3 | 0,54 | 0 to 1300 | 32 to 2372 | IEC 584-1 (ITS-90) |
| R | 0,09 | -50 to 1760 | -58 to 3200 | 0,5 | 0,9 | 500 to 1760 | 932 to 3200 | IEC 584-1 (ITS-90) |
| S | 0,08 | -50 to 1760 | -58 to 3200 | 0,5 | 0,9 | 500 to 1760 | 932 to 3200 | IEC 584-1 (ITS-90) |
| T | 0,14 | -250 to 400 | -418 to 752 | 0,2 | 0,36 | -100 to 400 | -148 to 752 | IEC 584-1 (ITS-90) |
| NiNiMoly | 0,03 | 0 to 1300 | 32 to 2372 | 0,3 | 0,54 | 780 to 1300 | 1436 to 2372 | G.E. (IPTS - 68) |
| Radiamatic | 0,6 | 420 to 1800 | 788 to 3272 | 0,7 | 1,26 | 780 to 1800 | 1436 to 2372 | Honeywell (RH) |
| Millivolts | 0,01 | -20 to 120 mV |  | $8 \mu \mathrm{~V}$ |  | -10 to 45 mV |  |  |
| Ohms | 0,01 | 0 to $2000 \Omega$ |  | 0,15 |  | 0 to $2000 \Omega$ |  |  |

Note that the Page 2 Accuracy values are available merely by selecting the sensor type and range (i.e. without user calibration). Improvements of up to 2 times can be obtained for the accuracy by calibrating to the required LRV/URV values.

All STT350 units pass through 20 hours of Environmental Stress Screening (ESS) by fast cycling between -40 and $+85^{\circ} \mathrm{C}$ to ensure maximum product reliability. During this ESS process, the ambient temperature compensation
coefficients are determined for individual units and burned in transmitter memory to provide maximum performance over a wide range of operating conditions.

## SPECIFICATIONS

## Operating Conditions

| Parameter | Reference conditions | Rated Condition | Operative Limits | Transportation and Storage |
| :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | $\begin{aligned} & 23^{\circ} \mathrm{C} \pm 2 \\ & 73^{\circ} \mathrm{F} \pm 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & -40 \text { to } 85 \\ & -40 \text { to } 185 \end{aligned}$ | $\begin{aligned} & -40 \text { to } 85^{*} \\ & -40 \text { to } 185 \end{aligned}$ | $\begin{array}{\|l\|} \hline-50 \text { to } 100 \\ -58 \text { to } 212 \end{array}$ |
| Humidity Rack Mounting \%RH Mounted in EP \%RH Housing | $\begin{aligned} & 10 \text { to } 55 \\ & 10 \text { to } 55 \end{aligned}$ | $\begin{aligned} & 5 \text { to } 95 \\ & 5 \text { to } 100 \end{aligned}$ | $\begin{aligned} & 5 \text { to } 100 \\ & 5 \text { to } 100 \end{aligned}$ | $\begin{aligned} & 5 \text { to } 100 \\ & 5 \text { to } 100 \end{aligned}$ |
| Supply Voltage, Current and Load Resistance | Voltage Range : 10.8 to 42.4 Vdc at the transmitter terminals Current Range : 3.6 to 21.8 mA <br> Load Resistance : 0 to 1450 Ohms (as shown in Fig 3) |  |  |  |
| Vibration | Maximum of 4 g over 15 to 200 Hz . (restricted to 3 g with indication meter) |  |  |  |
| Shock | Maximum of 40 g |  |  |  |
| Output D/A Accuracy <br> Cold Junction Accuracy <br> Total Reference Accuracy In Analog Mode= In Digital Mode = |  | ```\pm0.025% of span \pm0.25}\mp@subsup{}{}{\circ}\textrm{C Digital Accuracy of input + Output D/A Accuracy + CJ Accuracy (T/Cs only) Digital Accuracy of input + CJ Accuracy (T/Cs only) (example: transmitter operating in Analog Mode with Pt100 sensor and 0 to 200 % Total Reference Accuracy =0.1+((\frac{200/100)}{100}\times0.025)=0.15 'C``` |  |  |
| Digital Ambient Temperature Effect (per $10^{\circ} \mathrm{C}$ change from $20^{\circ} \mathrm{C}$ reference) |  | RTDs or Ohms : 0.029\% of reading T/Cs or mV : 0.042\% of reading |  |  |
| Cold Junction Rejection Effect |  | 60:1 for changes from $23^{\circ} \mathrm{C}$ ambient |  |  |
| Output D/A Ambient Temperature Effect |  | $0.045 \%$ of span per $10^{\circ} \mathrm{C}$ change |  |  |
| Total Output Ambient Temperature Effect (ATE) In Analog Mode = <br> In Digital Mode = |  | Digital ATE + Output D/A ATE + CJ ATE (T/Cs only) <br> Digital ATE + CJ ATE (T/Cs only) |  |  |
| Power Supply Voltage Effect |  | 0.005\% of span per Volt |  |  |
| Parameter $\quad$ Description |  |  |  |  |
| Adjustment Range | No limits to adjustments within the Maximum range except minimum span limit of 1 engineering unit e.g. $1^{\circ} \mathrm{C}$ |  |  |  |
| Output (2 Wire) | 4-20mA or Honeywell DE digital protocol <br> Extended range: $3.8-20.8 \mathrm{~mA}$. Fail safe modes $<3.8 \mathrm{~mA}$ or 21.8 mA |  |  |  |
| Damping Time Constant | Adjustable from 0 to 102 seconds digital damping |  |  |  |
| Thermocouple Burnout | Burnout detection is user selectable Upscale or downscale with critical status message |  |  |  |
| Input to Output Galvanic Isolation | Meets dielectric strength test of 1400Vac rms (50/60Hz) 2000Vdc for 1 minute |  |  |  |
| Series Mode Rejection | 40 dB (100 to 1) for 50 or $60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$ (with internal software filter set to local power line frequency) |  |  |  |
| EMC Compliance | In compliance with 89/336/EEC, Electromagnetic Compatibility (EMC) Directive |  |  |  |
| RFI Rejection | $\pm 0.1 \%$ of span at $30 \mathrm{~V} / \mathrm{m}$ over 20 to $1,000 \mathrm{MHz}$ in explosion-proof housing with shielded cables |  |  |  |
| Update Rate | 2 to 5 measurements per second depending on input variation |  |  |  |
| Response Time | 1.5 seconds to $90 \%$ of final step value |  |  |  |
| Stability/Time Drift | 0.05\% of maximum span per year. Auto calibration against internal reference every second. |  |  |  |

Physical Mounting, Construction and Approvals

| Parameter | Description |  |  |
| :---: | :---: | :---: | :---: |
| Mounting | Field Mount Housing with surface mounting or 2-inch pipe mounting (IP 66/NEMA 4X Rating) Field Mount Housing meets the applicable requirements of NEMA 7 and 9 |  |  |
| Wiring | Screw Terminals - M3.5x6.7mm nickel coated brass Accepts up to 12AWG, 16AWG recommended |  |  |
| Net Weight | Transmitter for DIN rail mount -0.5 kg (1.1 pounds) Transmitter in EP or XC housing -1.6 kg ( 3.6 pounds) Transmitter + indicator in housing -2.4 kg ( 5.2 pounds) |  |  |
| Materials of construction | Transmitter module - Aluminum housing with baked on Polyester paint cover - Noryl terminal block. EP housing - Aluminum housing with baked on epoxy-polyester hybrid paint cover (beige) XC housing - Aluminum housing with baked on 2 coats epoxy resin cover (beige) ST02 housing - Aluminum housing with baked on 2 coats epoxy resin cover (red) |  |  |
| Dimensions | See Fig 4 |  |  |
| Sensor/Cable Entry (EP, XC or ST02 Housing) | 1/2 inch NPT electrical connection with optional adapters for M $20 \times 1.5$, or 3/4 inch NPT |  |  |
| Safety Approvals | STT350 Module | CENELEC | Intrinsically Safe EEx ia IIC T4/T5/T6 with 30V/100mA/1.2W barrier (T4/T5/T6 $=-20$ to $+80 /+50 /+40^{\circ} \mathrm{C}$ ambient) |
|  |  | CSA | Intrinsically Safe Class I, Div.1, Groups A to D |
|  |  | FM | Intrinsically Safe Class I, II, III, Div. 1, Groups A to G <br> Non-incendive Class I, Div. 2, Groups A to D <br> Suitable for Class II, III, Div. 2, Groups F and G |
|  |  |  | Russian Certificate of pattern Approval No 332 of 18/10/94 IEC 68 and IEC 801 |
|  | Additional Approvals with EP, XC or ST02 Housings | With or Without Integral Meter  <br> Zone 2: T6, $28 \mathrm{~V} / 22 \mathrm{~mA}$ <br> Cenelec Flame Proof EEx d IIC T6 <br> CSA Explosion Proof Class I, II, III, Div. 1, Groups B to G <br> FM Explosion Proof Class I, II, III, Div. 1, Groups B to G <br> Without Integral Meter Explosion Proof Class I, II, III, Div. 1, Groups A to G |  |
| Surge/Lightning | Internal SP Selection | 10 kA peak current ( $8 / 20 \mu$ s waveform), 10kV peak Voltage (10/50 $\mu \mathrm{s}$ waveform) |  |
| Protection Options | External LP Selection | 10 kA peak current ( $10 / 20 \mu \mathrm{~s}$ waveform), 500A peak Current ( $10 / 1000 \mu \mathrm{~s}$ waveform) |  |
| Thermowell \& Probe Availability | STT350 can be supplied integrally mounted with any of the previously listed standard resistance temperature devices (RTDs) and thermocouple (T/Cs) elements. <br> Probe Types: <br> - $1 / 4$ " Rigid or spring loaded RTDs or T/Cs in Inconel or Stainless Steel sheaths in standard lengths from 3" to 24" (other lengths by request). <br> - Standard or heavy duty service. <br> - Locally mounted to the STT350 housing or remotely mounted into explosion-proof mounting heads. <br> - With (or without) probe lag hardware : Hex nipple, Straight nipple or Double lag and Union connections. <br> - Single or dual element availability; grounded or ungrounded T/Cs <br> Additionally, the following types of Thermowells can also be provided as an integral thermal solution : <br> Thermowell Materials: <br> Carbon Steel, 304SS, 316SS, 316L SS, 446SS, Hastelloy B, Hastelloy C, Monel, Inconel 600 (other materials by request). <br> Thermowell Types: <br> Threaded well, Flanged well, or Socket well, (with or without thermowell lag extensions). <br> Flange Types: <br> Raised Face, Flat Faced and Ring Type Joint flange availability in 1 ", 1.5 ", 2 " or 3 " sizes. <br> Flange Ratings: <br> ANSI 150\#, 300\#, 600\# and 1500\# ratings. |  |  |

NOTE: A minimum of 250 Ohms of loop resistance is required to support communications. Loop resistance is the total of loop wiring resistance, safety barrier and receiving device input developing resistor.

The triangle outlined by the heavy lines alongside shows the operating area for field wiring and barrier resistance beyond the 250 Ohms necessary for communications.

If a Smart Meter is included in the loop, allow an additional 2.25 Volts for meter power.

If surge lightning protection is included this adds 44 Ohms to the loop resistance; i.e., allow 1 Volt additional supply or reduced loop wiring power.


Figure 3-Supply Voltage versus Load Resistance


Figure 4-STT350 Transmitter and Optional Flameproof Housing Dimensions -reference only - mm (inches)

## Instructions

- Select the desired Key Number. The arrow to the right marks the selection available
- Make one selection from each table using the column below the proper arrow.

A dot denotes unrestricted availability. A letter denotes restricted availability. Restrictions follow Table VII.


| KEY NUMBER |  | Selection | Availability |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Description | STT350 <br> STT35F | $\downarrow$ | $\downarrow$ |  |
| STT350 Smart Temperature Transmitter Module (4-20mA/DE) STT35F Fieldbus Temperature Transmitter Module All modules carry the following approvals: |  |  |  |  |  |
| FM: | Intrinsically Safe for Class I, Div. 1, Groups A,B,C \& D * <br> Non-Incendive for Class I, Div. 2, Groups A,B,C,D |  |  |  |  |
| CSA: | Intrinsically Safe for Class I, II, III, Div. 1, Groups A,B,C,D,E,F,G |  |  |  |  |
| ATEX | Intrinsically Safe for EEx ia IIC T6/T5/T4(Module) |  |  |  |  |
| CE Mark: | All modules carry CE Mark and are in compliance with EN 50081-2 and 50082-2. |  |  |  |  |
| Russian Certificate of Pattern Approval No. 2064 of Jan. 1988. |  |  |  |  |  |

TABLE I - Sensor Probe and Thermowell Accessories

| No Integral Sensor Probe or Thermowell Supplied |  | 0 | $\bullet$ | $\bullet$ |
| :--- | :--- | :--- | :--- | :--- |
| Sensor Probe and/or Thermowell mounted or tested with STT 3000 | (Note 1) | 1 | $\mathbf{q}$ | $\mathbf{q}$ |

TABLE II - Transmitter Housing and Integral Meters (Select approval body certification in Table VII)

| Explosion-Proof <br> Field Mount <br> Housing <br> (Note 2) | No Housing Supplied | $00 \_--$ | $\bullet$ | $\bullet$ |
| :---: | :--- | :--- | :--- | :--- |
| Integral Meter <br> (Note 3) | For Stainless Steel or Red Epoxy Painted Housing, <br> select Table II EP__ and appropriate Table VI code. | No Meter Supplied <br> Analog Meter for Field Mount Housing | Digital Meter for Field Mount Housing <br> Fieldbus Digital Meter for Field Mount Housing | --00 |

Note 1: Specify 8 digit customer I.D. when probe/well selected. See Price Pages $13: T P-1$ to 16 for sensor/well pricing.
Note 2: With a housing, 20 characters max. of customer information is available on the nameplate at no charge
(See 13:STT-OE-5 for ordering instructions.)
Note 3: Remote Meter available as Model RMA300 (See Price Page 13:RM-1.)


TABLE IV - Optional Equipment

| Mounting Arrangement | No Mounting Arrangement Supplied DIN Rail Mounting via 2 Clips (to Top Hat or "G" Rail) Carbon Steel Mounting Bracket for 2" Pipe Stainless Steel Mounting Bracket for 2" Pipe |  | $\begin{aligned} & \hline 00 \\ & \mathrm{DR}_{--------} \\ & \mathrm{MB}_{------} \\ & \text {SB }_{------} \end{aligned}$ | $\bullet$ k j j | $\bullet$ k j j |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 316 SS Conduit <br> Adaptor for <br> Wiring Entry | No Adaptor(s) Supplied - 1/2" NPT Conduit Connection |  |  | $\stackrel{-}{\bullet}$ | $\bullet$ - |
|  | 1/2" NPT to M20 x 1.5 (EEx d IIC Approved) | 1 Adaptor 2 Adaptors |  |  |  |
|  |  | 1 Adaptor |  |  |  |
| Lightning Protection | No Lightning Protectio <br> External Lightning Pro <br> Internal Surge/Lightning | Supplied <br> ction - Mountable to Housing <br> Protection | $\begin{aligned} & \hline---00 \_- \\ & ---\mathrm{LP}_{--} \\ & ---\mathrm{SP}_{--} \\ & \hline \end{aligned}$ | $\stackrel{\text { - }}{ }$ j | j <br> j |
| Operator/User Manual | None <br> English Version (for S <br> English Version (for S <br> French Version <br> Spanish Version | $\begin{aligned} & \text { 35F Only) } \\ & 350 \text { Only) } \end{aligned}$ | -----00 $-----E F$ $-----E N$ ----- FR ----- SP | - | $\bullet$ |

TABLE V - Optional Extended Warranty Coverage \& Certificates

| Optional <br> Extended <br> Warranty | Standard Warranty | 0 | - | - |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Warranty - 1 year | 1 | - | - |
|  | Additional Warranty - 2 years | 2 | - | - |
|  | Additional Warranty - 3 years | 3 -- | - | - |
|  | Lifetime Warranty - 15 years | L |  |  |
| Optional Certificate (Note 5) | No Transmitter Configuration/ Calibration Certificate | ${ }_{-}{ }_{-}$ | - | - |
|  | Transmitter Configuration/ Calibration Certificate (D-0097-RD.A) | D _ | - | - |
|  | No Certificate of Conformance/ Origin Certificate of Conformance/ Origin (D-0098-RD.A) | --0 $C$ | $\bullet$ | $\bullet$ |

Note 4: Replaces Selection $\qquad$ US
Note 5: Installation Guide, chosen Operator's Manuals and chosen Certificates are automatically shipped with unit. See 13:STT-OE-7 for additional manuals and alternate shipping.

|  | Availability |  |  |
| :---: | :---: | :---: | :---: |
| TABLE VI - Additional Features | $\begin{gathered} \text { STTT35 } \\ \text { Selection } \end{gathered}$ | $\begin{gathered} \downarrow \\ 0 \end{gathered}$ | $\downarrow$ |
| No Selection | 0000 | - | - |
| Red Epoxy Painted Housing Cap | ST01 | j | j |
| Red Epoxy Painted Explosion-Proof Housing ${ }^{(5)}$ | ST02 | g | g |
| 316 Stainless Steel Explosion-Proof Housing ${ }^{(5)}$ | ST07 | g | g |

${ }^{(5)}$ Must be ordered with Table II EP _ _.

TABLE VI - Additional Features

| Availability |  |  |
| :---: | :---: | :---: |
| STT35 _ | $\downarrow$ | $\downarrow$ |
| Selection | 0 | F |
| 0000 | - | - |
| ST01 | j | j |
| ST02 | g | g |
| ST07 | g | g | 316 Stainless Steel Explosion-Proof Housing ${ }^{(5)}$

Pricing Table A

| Table VI | Table II |
| :---: | :---: |
| ST07 | EP00 |
|  | EPME |
|  | EPSM |
|  | EPFM |

TABLE VII - Safety Approval Body Selection Appearing on Housing Nameplate

| Approval Body <br> None | Approval Type | n or Classif |  | 00 | $\bullet$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No approval body certifications included |  |  |  |  |  |
| FM <br> Approvals | Explosionproof | Class I, D | Groups A,B,C,D | 1C | f | f |
|  | Dust-Ignitionproof | Class III, | 1, Groups E,F,G |  |  |  |
|  | Intrinsically Safe Nonincendive Suitable for Outdoor Location | Class I, II <br> Class I, <br> Class II, <br> Enclosure | Div. 1, Groups A,B,C,D,E,F,G <br> Groups A,B,C,D <br> . 2, Groups F, G <br> 4X |  |  |  |
|  | Explosionproof | Class I, D | Groups B,C,D (with Indicator) |  |  |  |
|  | Dust-Ignitionproof | Class II, 1 | . 1 Groups E,F,G |  |  |  |
|  | Intrinsically Safe <br> Nonincendive Suitable for Outdoor Location | Class I, II, <br> Class I, <br> Class II, <br> Enclosure | Div. 1, Groups A,B,C,D,E,F,G <br> Groups A,B,C,D <br> . 2, Groups F, G <br> 4X | 1J | j |  |
|  | Intrinsically Safe Nonincendive | $\begin{aligned} & \hline \text { Class I, II } \\ & \text { Class I, } \end{aligned}$ | Div. 1, Groups A,B,C,D,E,F,G Groups A,B,C,D | 1G | m | m |
|  | Explosion-Proof | Class I, D | Groups B,C,D |  |  |  |
|  | Dust Ignition-Proof | Class II, | V. $1, \mathrm{Groups} \mathrm{E}, \mathrm{F}, \mathrm{G}$ |  |  |  |
| CSA | \|'Intrinsically Safe Suitable for Outdoor Location | Class I, II Class II, Enclosure | $\begin{aligned} & \text { Div. } 1, \text { Groups A,B,C,D,E,F,G } \\ & \text { v. 2, Groups F, G } \\ & \text { e 4X } \end{aligned}$ | 2J | j | j |
|  | Intrinsically Safe Suitable for | $\begin{aligned} & \hline \text { Class I, II } \\ & \text { Class I, D } \end{aligned}$ | Div. 1, Groups A,B,C,D,E,F,G Groups A,B,C,D | 2G | m | m |
|  | Intrinsically Safe, | Ex II 1 G | EEx ia IIC T4, T5, T6 (Module) | 3S | - |  |
|  | Flameproof, Zone 1 | Ex II 2 G | EEx d IIC T5, T6 Enclosure rated IP 66/67 | 3D | j |  |
| ATEX* | Non-Sparking, <br> Zone 2 | Ex II 3 G | EEx nA, T5, T6, Zone 2 (Honeywell) Module to be installed in enclosure rated IP 54 minimum | 3 N | j | j |
|  | Multiple Marking**, Int. Safe, Zone 0/1, or Flameproof, Zone 1, or <br> Non-Sparking, Zone 2 | $\begin{array}{\|l} \text { Ex II } 1 \text { G } \\ \text { Ex II } 2 \text { G } \\ \text { Ex II } 3 \text { G } \end{array}$ | EEx ia IIC T4, T5, T6 <br> EEx d IIC T5, T6 <br> EEx nA, IIC T5, T6 (Honeywell) <br> Enclosure IP 54 minimum | 3H | j | j |
| SA | Intrinsically Safe, Zone 0/1 | Exia IIC | a $=70^{\circ} \mathrm{C}$ ) | 4S | $\bullet$ |  |

* See ATEX installation requirements in Operator's Manuals EN1I-6162 \& EN1I-6196
** The user must determine the type of protection required for installation of the equipment. The user shall then check the box [ $\checkmark$ ] adjacent to the type of protection used on the equipment certification nameplate. Once a type of protection has been checked on the nameplate, the equipment shall not then be reinstalled using any of the other certification types.


## RESTRICTIONS

| Restriction Letter |  | Available Only With |  | Not Available With |
| :---: | :---: | :---: | :---: | :---: |
|  | Table | Selection | Table | Selection |
| f | II | EP _- | II | __ SM, __ FM |
| g | II | EP _- |  |  |
| j | II | EP |  |  |
| k | II | 0000 |  |  |
| m |  |  | II | EP |
| q | $\begin{aligned} & \hline \text { VII } \\ & \text { II } \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~J}, 2 \mathrm{~J} \\ & \mathrm{EP}_{\mathrm{C}} \end{aligned}$ |  |  |

Note: See 13:STT-9 and User's Manual for part numbers.
See 13:STT-OE-5 for OMS Order Entry Information including tagging, transmitter configuration, manuals, certificates, drawings and SPINS.
To request a quotation for a non-published "special", fax RFQ to Marketing Applications at 602 313-6155.

| Distributor : |
| :--- |
|  |
|  |
|  |
|  |
|  |
|  |
|  |

Industrial Measurement and Control
Honeywell Inc.
In the U.S.A.: Honeywell Industrial Automation and Control, 16404 North Black Canyon Hwy., Phoenix, AZ 85023, (602) 313-5000
In Europe: Honeywell PACE, 1 Avenue du Bourget, B-1140 Brussels, Belgium, (32) 2-728-211
Honeywell S.A., Zone Industrielle de Longpré, F-80084 Amiens Cédex 2, France, (33-3) 22-54-56-56
In Asia: Honeywell Asia Pacific Inc., N ${ }^{\circ}$ 19, Toa Payoh, Lorong 8 \#06-00, Singapore 1231, 354-6768
In the
Mediterranean:
In Canada: The Honeywell Centre, 155 Gordon Baker Rd., North York, Ontario M2H 3N7, 1-800-461-0013
In Latin America: Honeywell Inc., 14505 Commerce Way, Suite 500, Miami Lakes, Florida 33016-1556, (305) 3642300

